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a b s t r a c t

We solved both the Diffusion and Laplace equations which predicted very similar results for the problem
of a dissolving small gas bubble suspended in a liquid medium. These bubbles dissolved both because of
surface tension and solute concentration effects. We focused on predicting bubble lifetimes (‘‘td ’’), and
dissolution dynamics — radius vs time (R vs t) for these contracting bubbles. We also presented a direct
comparison of the predicted results, obtained by applying either Dirichlet or Neumann boundary condi-
tions, to the bubble/medium interface. To the best of our knowledge, this is the first direct comparison
that has ever been published on the application of these different boundary conditions to a moving
gas/liquid boundary. We found that the results obtained by applying either Dirichlet or Neumann bound-
ary conditions were very similar for small, short-lived bubbles (R0 < 25 l; td < 40 s), but diverged con-
siderably for larger, longer-lived bubbles. We applied our expressions to the timely problem of Inner Ear
Decompression Sickness, where we found that our predictions were consistent with much of what is
known about this condition.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Decompression Sickness, arterial gas emboli, and the Diffusion
equation

Decompression Sickness (DCS) is a medical problem that can
range in severity from very mild to fatal. It can affect a variety of
organs and tissues, including the skin, joints, the spinal cord, the
brain, the eyes, and the inner ear. When it occurs, it is a conse-
quence of an overly rapid drop in the ambient pressure. Depending
on whether the initial ambient pressure is equal to or greater than
�1 atm, it is called hypobaric DCS and hyperbaric DCS, respec-
tively. Hyperbaric DCS arises from overly rapid decompression in
scuba diving, while hypobaric DCS arises from overly rapid decom-
pression in aviation and space exploration. While the detailed
pathophysiology of DCS is still largely unknown, it is very widely
accepted as being due to the formation and/or growth of gas bub-
bles in the blood and tissues of the body, as a consequence of an
overly rapid decompression. There is also a growing consensus that
in many forms of DCS, the gaseous bubbles that cause the problem
are vascular, as opposed to extravascular.

In this work we mathematically characterize the rates of
growth/dissolution, and the dissolution times of small arterial
gas emboli (AGEs) by solving the Diffusion equation:

@

@t
cðr; h;/; tÞ ¼ Dr2cðr; h;/; tÞ: ð1Þ

In Eq. (1) c is the dissolved solute concentration in the medium, t is
time, D is the diffusion constant, ðr; h;/Þ are the spherical co-
ordinates of an infinitesimal volume element in the medium, and
r2 is the Laplacian operator.

1.2. Arterial gas emboli (AGE)

Most AGEs per se, in the absence of decompression, are small,
dissolve rapidly, and do not cause DCS. It is currently believed that
many (if not most or all) people have small AGEs present in their
arterial circulation. Because of the effects of both dissolved gas
under-saturation of arterial blood (below), and surface tension
(Eq. (2)), AGEs are thermodynamically unstable, and will dissolve:

Pb ¼ Pe þ
2c
R
: ð2Þ

Eq. (2) is the well-known Young–Laplace equation, wherein Pb is the
gas pressure inside the bubble, Pe, the external pressure, is the
pressure in the medium that surrounds the bubble, c is the surface
tension of the bubble/medium interface, and R is the radius of the
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bubble. As will be shown (Fig. 5), small gas bubbles (R � 5 l) at
low-to-moderate pressures (Pe � 5 atm), suspended in arterial
blood, will dissolve within a few seconds due to these combined
effects.

A significant source of these small naturally occurring AGEs is
‘‘right-to-left shunting’’ (r/l shunting). This is the phenomenon
whereby small gas bubbles are transferred from venous to arterial
circulation. They arise in venous circulation due to the release of
excess dissolved inert gas (e.g. N2) from tissues during decompres-
sion. If sufficiently small, AGEs remain harmless provided the
ambient pressure is fixed, but become potentially problematic if
the ambient pressure drops rapidly. R/l shunting occurs because
of specific types of abnormalities in the body, which are not rare.
These abnormalities include: a Patent Foramen Ovale (‘‘PFO’’),
incomplete bubble elimination by the alveoli, and Arterio-Venous
Anastomoses (AVAs). A PFO is a defect in the atrial septum of the
heart which allows venous blood, together with suspended venous
gas bubbles, to enter the arterial circulation [1]. Incomplete bubble
elimination by the alveoli may occur because of inefficient gas ex-
change by damaged or compromised alveoli [2]. AVAs are blood-
passing ducts that act as pulmonary shunts, by allowing venous
blood and any bubbles it contains, to bypass the lungs (which nor-
mally act as effective filters for venous gas bubbles), and enter the
arterial circulation [3]. AVAs are believed to be remnants of fetal
pulmonary shunts which (normally) close after birth [3].

As indicated above, small AGEs dissolve rapidly because of both
surface tension, and dissolved solute under-saturation, and
normally cause no harm. During rapid decompression however,
tissues become temporarily supersaturated with respect to the cir-
culating dissolved inert gas. Any AGEs entering the arterial capil-
laries of these tissues will (because they are under-saturated in
inert gas relative to these tissues) become nucleation seeds, which
will grow due to the transfer of dissolved inert gas from the contig-
uous tissue to themselves. If they grow sufficiently, they may cause
DCS. They may block arterial circulation to the surrounding tissue
(ischemia), thereby depriving them of necessary Oxygen. Also, they
may damage delicate tissues by tearing or disrupting them. As
discussed below in Section 3, tissue damage of this kind has been
suggested as an explanation for the poor treatment outcomes
found for Inner Ear Decompression Sickness (‘‘IEDCS’’) [4].

In this work, we will focus on developing tractable approximate
models for predicting the dynamics of AGE contraction, and their
dissolution time. These AGEs will be modeled as spherical gas
bubbles containing air, embedded in a liquid, for which Eq. (2) of
applies. Because of the timeliness and importance of IEDCS, we will
focus on the possible connection of AGE lifetimes to this condition.

1.3. Solute transport via diffusion and mixing

A significant uncertainty in this work stems from the fact that
circulating arterial blood is not static, but is a flowing medium.
Dissolved gas transport in the vicinity of a growing/contracting
bubble embedded in such a medium will involve convection (aka
‘‘mixing’’) and diffusion, as opposed to diffusion alone. This diffi-
culty, which is ubiquitous in applications of the Diffusion equation
to physically realistic problems, was first pointed out by Epstein
and Plesset in their seminal paper on the application of the Diffu-
sion equation to an air bubble in water [5]. Their particular resolu-
tion was to simply state that their result for the dissolving time (in
which the unknown effect of mixing was omitted) represented an
upper bound on its correct value [5].

While the problem of quantitatively working out the relative
contributions of diffusion and mixing in physically realistic prob-
lems remains largely unsolved, some progress has been made over
the last few decades. Specifically, the so-called ‘‘two-region model’’
used by Epstein and Plesset, is now often replaced by a three-region

model, of the kind illustrated in Fig. 1 [6]. The idea is to simplify the
solute transfer problem by physically separating the regions where-
in diffusion and mixing occur. As shown in the three-region model
in Fig. 1, diffusion alone is assumed to occur in the spherical shell of
thickness (H � R) that surrounds the bubble. Mixing alone is as-
sumed to occur in the outer so-called ‘‘well-stirred region’’ (WSR),
which is an outer spherical shell that surrounds and encloses the
diffusive region. In the WSR there are no solute concentration
gradients, by definition. Thus, by increasing or decreasing the
thickness (H � R) of the inner shell, one respectively increases or
decreases the relative contribution to solute transport made by
pure diffusion.

2. Theory

Our main objective in this section is to derive explicit expres-
sions for the time-evolution of the radius of an AGE, and its disso-
lution time, given a prescribed initial state, external pressure PeðtÞ,
and concentration cmðtÞ in the WSR (or, equivalently, at r ¼ H in
the Diffusive region — see Fig. 1).

While the Diffusion equation per se can be viewed as exact in
the linear response regime, particular solutions of it can be ob-
tained only after specifying the relevant boundary conditions,
which are physically-based, and are often approximations of real-
ity. While cmðH; tÞ can be specified from the basis of the arterial
gas equation (Eqs. (23) and (24), below), cbðR; tÞ cannot. The latter
requires the further assumption that Henry’s law [7]:

cbðR; tÞ ¼
PbðtÞ
KH
¼ 1

KH
PeðtÞ þ

2c
R

� �
ð3Þ

applies to the gaseous solute (which here will be approximated by
air) at the bubble interface.

The Henry’s law constant ‘‘KH ’’ provides the ratio of a solute’s
partial pressure in a gas to its concentration in solution, when the
solute is in thermodynamic equilibrium with respect to the two phases
[7]. Since the dissolution of an AGE is a non-equilibrium process,
there is no basis for assuming that Henry’s law applies at the sur-
face of the shrinking bubble. Nevertheless, with the exception of
one important recent article [8], in all previous work done on this

Fig. 1. Physical model of a bubble surrounded by a diffusive medium, which is
surrounded by a well-stirred region (‘‘WSR’’) shown in grey. For two-region models,
H!1, and for three-region models H is finite. cb is time-dependent, because (in
this work) the bubble continuously contracts with time. cm is a constant when the
ambient pressure is constant, but is time-dependent, when the ambient pressure is
time-dependent (such as during an ascent).
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problem, Henry’s law was invariably assumed to apply at the bub-
ble interface (see Ref. [6], and references therein).

The article referred to above describes the novel approach to the
problem taken by Mohammedein and Mohamed [8]. These authors
applied Neumann boundary conditions — as opposed to Dirichlet
boundary conditions — at the bubble’s surface, thereby avoiding
the need to assume that Henry’s law applies at this surface. The
difference between the two is that while Dirichlet boundary condi-
tions require that the value of a quantity (here cðR; tÞ) be specified
at all times at the boundary, Neumann boundary conditions
require that the values of a normal gradient (here ð@c=@rÞR) be
specified at all times at the boundary [9, (a)].

While the work in [8] provides a novel solution to the gas
bubble problem, it too is not expected to be generally exact. This
is because the method in [8] requires the use of a combined vari-
able (or ‘‘similarity variable’’), in order to separate the Diffusion
equation — a partial differential equation — into two ordinary
differential equations, which are subsequently solved separately.
The exact functional form selected for the combined variable will
dictate the form of the bubble growth law (see Eqs. (16)–(19), be-
low). However, the fact that a particular choice for the mathemat-
ical form of the combined variable successfully separates the
Diffusion equation into two ordinary differential equations does
not necessarily mean that the growth law implied by this choice
is exact. The growth law arises from ‘‘the physics’’ of the problem.

Since neither the Dirichlet nor the Neumann-based solutions
are expected to be generally exact, we will apply them both in this
work. It will be shown below, that there exist significant regions of
agreement between the predictions of the two methods. The
expectation is, that for the problem of interest here, where these
fundamentally different methods of solution agree, their predic-
tions are probably correct.

2.1. Derivations based on a Dirichlet boundary condition and Henry’s
law at the bubble surface

Here we provide derivations for the bubble contraction rate
‘‘dR=dt’’ (which is a time-dependent function), and the dissolution
time ‘‘td’’ for an AGE, given an initial state, and Dirichlet boundary
conditions at the two boundaries of the diffusion region (i.e. at
r ¼ R and H). The initial state includes the initial bubble radius
(R0), the initial number of moles of solute in the bubble, and the
initial solute concentration distribution throughout the diffusion
region (R0 6 r 6 H0). Dirichlet boundary conditions apply at all
times (t P 0) at both boundaries. Also, Henry’s law is assumed to ap-
ply at all times, both at the bubble’s surface, and in the well-stirred
region. Thus, cðR; tÞ ¼ cbðR; tÞ, and cðH; tÞ ¼ cmðH; tÞ, where cbðR; tÞ
and cmðH; tÞ are obtained, respectively, from Henry’s law for air, ap-
plied at the bubble surface (r ¼ R, and Eq. (3)), and in the well-stirred
region (r ¼ H, and Eqs. (23) and (24)).

We will provide solutions both of the full Diffusion equation ((1)
or (6), below), and of the simpler Laplace equation (Eq. (9), below).
The latter is obtained from the former by making the further
assumption that a steady-state exists within the diffusion region
at all times (Eq. (8), below). As further discussed below, this is
equivalent to assuming that a separation of time scales exists, such
that the dissolved solute concentration in the diffusion region
re-adjusts instantly to any changes in both the bubble radius and
the external pressure.

The general strategy is to first derive the connection between
dR=dt and ð@c=@rÞR. Subsequently, expressions for ð@c=@rÞR are
developed which satisfy either the Diffusion or the Laplace equa-
tion. For the latter, we will derive expressions for ð@c=@rÞR appropri-
ate to several physical models wherein different diffusion/mixing
schemes are assumed.

The connection between dR=dt and ð@c=@rÞR is obtained from
Fick’s law [10]:

dn
dt
¼ 1

RT
d
dt

PbVbð Þ ¼ 4pR2D
@c
@r

� �
R

: ð4Þ

Here, n is the total number of moles of air in the bubble, D is the dif-
fusion constant of air in the medium, ð@c=@rÞR is the concentration
gradient of dissolved air in the medium at R; T is the absolute
temperature, and we have used the Ideal Gas law in the middle
expression in Eq. (4), with ‘‘R’’ used to represent the Gas Constant.

Combining Eqs. (2)–(4) gives the desired result:

dR
dt
¼ 1

3PeRþ 4c
3RTDR

@c
@r

� �
R

� R2 dPe

dt

� �
: ð5Þ

Different bubble growth/contraction rate laws, and different disso-
lution time expressions, will arise from using different expressions
for ð@c=@rÞR in Eq. (5). The expressions that arise for the latter are a
result both of the diffusion model used, and whether the solution is
for the Diffusion or the Laplace equation.

We next provide four expressions for ð@c=@rÞR, corresponding to
each of four different models.

(I) The Diffusion equation under conditions of spherical sym-
metry is:

@c
@t
¼ D

@2c
@r2 þ

2
r
@c
@r

 !
: ð6Þ

For a Step function initial solute concentration (i.e., cðR; 0Þ ¼
cb; cðr; 0Þ ¼ cm; H > r > R), and for H!1 and fixed, Epstein
and Plesset [5] showed that Eq. (5)

@c
@r

� �
R
¼ ðcm � cbÞ

1
R
þ 1ffiffiffiffiffiffiffiffiffi

pDt
p

� �
ð7Þ

satisfies Eq. (6). We will refer to the model resulting from
using Eq. (7) in Eq. (5) as the ‘‘DiSIC-HF2’’ model. The abbre-
viation stands for ‘‘the Diffusion equation, using a Step func-
tion for the Initial Condition for the concentration, with H
Fixed, and 2 refers to a two-region model, i.e., H!1’’.

(II) On the other hand, under the steady-state approximation:

@c
@t
� @cðr; tÞ

@t

� �
r

¼ 0; ð8Þ

the Diffusion equation reduces to the Laplace equation:

r2cðr; tÞ ¼ @2cðr; tÞ
@r2

 !
t

þ 2
r
@cðr; tÞ
@r

� �
t
¼ 0: ð9Þ

The general solution of Eq. (9) for the two-region model (i.e.
H!1) is:

cðr; tÞ ¼ AðtÞ þ BðtÞ
r
; t P 0; r P R: ð10Þ

Here AðtÞ and BðtÞ are determined from the values of the
dissolved air concentration at the inner and outer bound-
aries of the diffusion region, i.e. from cbðR; tÞ and cmðH; tÞ,
respectively.
The physical basis of the steady-state approximation can be
appreciated by substituting Eq. (10) into (8). It then becomes
clear that this approximation is equivalent to assuming that
the rates of bubble growth and external pressure changes
are negligible, relative to the rate of solute redistribution
in the diffusion region. Also, a key mathematical distinction
is that cðR; tÞ has either explicit or implicit time-dependen-
cies, depending on whether it results from solving the Diffu-
sion or the Laplace equations, respectively.

J.M. Solano-Altamirano, S. Goldman / Mathematical Biosciences 252 (2014) 27–35 29
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From Eq. (10), and these boundary conditions, the following
expression for the solute concentration gradient normal to
the bubble surface at time ‘‘t’’ is obtained:

@c
@r

� �
r¼R;t
¼ cmðtÞ � cbðtÞ

RðtÞ : ð11Þ

We will refer to this as the ‘‘LHF2’’ model (Laplace equation,
(H) Fixed, 2-region). By comparing Eqs. (7) and (11) it is evi-
dent that neglecting the explicit time-dependent term on the
right-hand side of Eq. (7), as Epstein and Plesset did in order
to derive their approximate working expressions, is exactly
equivalent to solving the Laplace equation for this model.
This physical basis for Epstein and Plesset’s mathematical
approximation has gone unnoticed in previous work.

(III) A plausible alternative is to allow the thickness of the diffu-
sion layer to be related to the bubble radius, as opposed to
being independent of it. Therefore, we next introduce a
three-region model in which ‘‘HðtÞ’’, the inner radius of the
WSR, is made proportional to the radius of the bubble, and
thereby time-dependent. We define:

HðtÞ � kRðtÞ; ð12Þ

where k is a constant (> 1). The thickness of the diffusion
layer would now not be fixed, but be given by HðtÞ � RðtÞ,
or RðtÞ½k� 1�. It is straightforward to show that for this
model,

@c
@r

� �
r¼R;t

¼ k
k� 1

� �
cmðtÞ � cbðtÞ

RðtÞ : ð13Þ

We will refer to this as the ‘‘LHV3’’ model (Laplace equation,
(H) Variable, 3-region).

(IV) Another version of a three-region model, which was used by
Mohammedein and Mohamed [8], and others (Ref. [6], and
references therein), can be constructed by choosing a fixed
finite value of H, with H > R. For purposes of comparison
with the results obtained from using Neumann boundary
conditions at the bubble surface, we also solved the Laplace
equation for this model, by applying Dirichlet boundary con-
ditions and Henry’s law at the bubble surface. This gives:

@c
@r

� �
r¼R;t

¼ H
RðtÞ

cmðtÞ � cbðtÞ
H � RðtÞ

� �
: ð14Þ

We will use the abbreviation ‘‘LHF3’’ for this model, where
the meaning of the acronym should now be obvious.

In Table 1 below, we summarize the four models we used that
are based on Dirichlet boundary conditions and Henry’s law at the
bubble/diffusive medium interface.

2.2. Derivations based on Neumann boundary conditions at the bubble
surface

This work was described in Ref. [8], to which the reader is
referred for details. Here, for purposes of completeness and conti-
nuity, we mention a few of the main elements of the method. We

also point out two significant differences between our application
of this method, and its application in Ref. [8].

One difference is that the work in Ref. [8] was based on the
expansion of an AGE, once it is present in an arteriole surrounded
by supersaturated tissue. On the other hand, our application is fo-
cused on determining the lifetimes of small AGEs as they dissolve
and contract in arterial blood, but prior to getting to the supersat-
urated tissue that ultimately may cause them to inflate.

Another difference is that, unlike in Ref. [8], we will not apply
this method to conditions where the ambient pressure ‘‘PeðtÞ’’, var-
ies with time, such as in an ascent at the end of a scuba dive. This is
because if PeðtÞ is not constant with time, then neither is the solute
concentration in the WSR. This can be seen from Eq. (15) which
explicitly shows the time-dependence of cmðH; tÞ during an ascent
from a scuba dive:

cmðH; tÞ � cartðtÞ ¼
PartðtÞ

KH
ffi fPeðtÞ

KH
¼ f

P0 � aðt � t0Þ
KH

� �
: ð15Þ

As described more fully below KH; f ; cartðtÞ, and PartðtÞ are
respectively, the Henry’s law constant for air in arterial blood,
the ratio of the dissolved air concentration in arterial blood to its
saturation value in arterial blood at pressure Pe, the concentration
of dissolved air in arterial blood, and the partial pressure of
dissolved air in arterial blood. The problem is that the method of
combined variables (or the ‘‘similarity method’’) does not have
an analytic solution (of which we are aware), for ‘‘cmðH; tÞ’’ time-
dependent. In Ref. [8] cmðH; tÞ was taken as constant both at fixed
depths, and during an ascent. Thus, while the solution given for an
ascent in Ref. [8] was mathematically correct, taking cmðH; tÞ to be
constant during an ascent is physiologically inconsistent with what
actually happens during an ascent from a scuba dive. In fact, it is
precisely because the demand valve (or regulator) used in scuba
diving provides the breathing gas to the diver at ambient pressures
at all depths, that scuba diving is possible. Without the demand
valve it would be impossible to breath underwater.

2.2.1. Derivation for RðtÞ and cðR; tÞ using the similarity method at
fixed ambient pressure

Construct a combined variable (or ‘‘similarity variable’’) ‘‘s’’, of
the form:

s ¼ br
RðtÞ : ð16Þ

Here, r and RðtÞ have their previous meaning, and b is a constant.
When recast in terms of this combined variable, the Diffusion equa-
tion under spherical symmetry (Eq. (6)) can be written as:

R
dR
dt
¼ �Db2

s
1
@c
@s

� �
 !

@2c
@s2 þ

2
s

( )
¼ A

2
: ð17Þ

Integration of this equation over R and t is trivial, giving

R2 ¼ At þ B: ð18Þ

Using Rð0Þ ¼ R0 and RðtdÞ ¼ 0, where td denotes the dissolution
time, one finds:

Table 1
Abbreviations used for four models, and the corresponding expressions for ð@c=@rÞR .

Model abbreviation Description Equation for ð@c=@rÞR
DiSIC-HF2 Uses solution of Diffusion equation with a Step IC, two regions (fixed H ¼ 1). (7)
LHF2 Uses solution of Laplace equation, two regions (fixed H ¼ 1). (11)
LHV3 Uses solution of Laplace equation, three regions (variable H;HðtÞ ¼ kRðtÞ). (13)
LHF3 Uses solution of Laplace equation, three regions (fixed finite H). (14)
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RðtÞ ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t

td

r
ð19Þ

for the time-dependence of the radius of a dissolving bubble.
Using Eqs. (16) and (17), and following a similar procedure as

was used in Ref. [8], it can be shown that the solution of the Diffu-
sion equation for the dissolved solute concentration in the medium
at the bubble surface is given by:

cðRðtÞ;tÞ¼ cmþexp
A

4D

� �
A

4D
3PeRþ4cð Þ

� �

� R
H

exp � AH2

4DR2

 !
�exp � A

4D

� �
þ

ffiffiffiffiffiffiffi
pA
4D

r
erf

H
R

ffiffiffiffiffiffiffi
A

4D

r !
�erf

ffiffiffiffiffiffiffi
A

4D

r !" #( )
:

ð20Þ

Here A is a constant that is determined numerically (e.g. by the
Newton–Raphson method) after setting t ¼ t0. In arriving at Eq.
(20), we used a finite constant value of H and took the ambient
pressure to be fixed. Eq. (20) was used to determine cðR; tÞ, the
behavior of which is illustrated in Fig. 3.

3. System

3.1. Approximations for arterial blood, it’s dissolved gases, and the
contents of the bubble

Arterial blood in humans is a highly complex fluid which, at a
total alveolar (or external) pressure of 760 mm Hg (1 atm), consists
of 570 mm N2 (�76%), 95 mm O2 (�13%), 46 mm H2O (�6%), and
40 mm CO2 (�5%), in addition to its non-volatile constituents [2].
The these partial pressures sum to 751 mm Hg, which indicates that
arterial blood is slightly under-saturated i.e. ð751=760 ¼ 0:988Þ < 1,
with respect to its gaseous constituents. This slight (over-all) under-
saturation is due to a ventilation-perfusion ratio that is less than
one. This causes a reduced oxygen partial pressure in arterial blood,
relative to its alveolar value (95 mm Hg in arterial blood vs 104 mm
Hg the alveoli [2]). The complexity of the problem is further exacer-
bated by the fact that the arterial partial pressures of N2 and O2

increase with their increasing alveolar pressures, while the partial
pressures of CO2 and H2O are almost constant, and constant, respec-
tively [2,12].

It would be extremely difficult (if not impossible) to solve the
Diffusion equation for a bubble containing a multicomponent gas-
eous mixture manifesting this level of complexity. However, it is
not necessary to do this for our purpose, which is to estimate the
temporal dissolution pattern of the bubble (R vs t), and its dissolu-
tion time. For given initial conditions, these functions are largely
determined by the overall degree of under-saturation, the average
values of the underlying physical constants, and by the surface ten-
sion of the bubble.

Consequently, we will approximate the gas mixture dissolved in
arterial blood, and which fills the AGE, by air (taken to be a 1-
component gas). Also, the physical constants for air in water at
37 �C (the Henry’s law constant and the Diffusion constant), will
be used in place of the values for the actual constituent gases in
arterial blood (some of which are unknown). Thus, arterial blood
will be assumed, at all external pressures, to contain a partial pres-
sure of dissolved air that is 0.988 of its saturation value, and the
bubble will be assumed to consist of pure air, whose total pressure
is given by Eq. (2). The working expressions resulting from this
model are given below around Eqs. (23) and (24).

3.2. The application

We focus on small, short-lived AGEs arising from r/l shunting,
and their possible relation to IEDCS. We chose to focus on small,
short-lived AGEs for physical reasons that are described below.

This particular medical condition was selected both because its
importance and timeliness in diving medicine.

Recently, Klingmann [4] reported the results of a clinical study
wherein almost 75% of recreational scuba divers breathing air, and
diving conservatively, who were diagnosed with IEDCS, also had an
r/l shunt. This followed an earlier study in which 82% of the IEDCS
patients were reported to have had an r/l shunt [11]. Klingmann
suggested that the pathophysiology of IEDCS very likely involved
AGEs getting to the arterioles of the inner ear, and that during
decompression, the transfer of excess N2 from contiguous super-
saturated tissue to the AGE(s) causes the AGE(s) to inflate.

Unfortunately, IEDCS very often has a poor treatment outcome
when treated by standard recompression therapy, i.e., it usually
results in some degree of permanent hearing loss. Klingmann
suggested that this may be a consequence of irreversible tissue
damage to the very thin membranous structures of the vestibular
region in the inner ear, which may be intolerant to local bubble
growth.

The physical reason for choosing to work with small AGEs was
that our boundary conditions — both Dirichlet and Neumann — are
likely to be correct for small short-lived AGEs, but incorrect for
larger, longer-lived AGEs. As will be shown in Section 5, both
Dirichlet and Neumann boundary conditions, each applied with
their respective approximations at the bubble/medium interface,
predicted very similar contraction rates and dissolution times for
small (< 25 l) short-lived (< 40 s) AGEs. But their predictions
diverged as the initial size and lifetimes of the AGEs increased sig-
nificantly beyond these values. Therefore, in order to be reasonably
confident in the validity of our predictions, we chose to focus on
these small short-lived AGEs for which both methods agreed.

4. Calculations

4.1. Analytic working equations for the LHF2, LHF3 and LHV3 models

These are based on solving the Laplace equation using Dirichlet
boundary conditions, Henry’s law at the bubble surface, and a fixed
ambient pressure.

4.1.1. LHF2
Substituting the expression for ð@c=@rÞR given by Eq. (11) into

Eq. (5), and considering the ambient pressure to be constant, we
find

3Dd 	 dt ¼ 3PeR2 þ 4Rc
RPeðf � 1Þ � 2c

dR; ð21Þ

where

d � RT=KH: ð22Þ

In arriving at Eq. (21), we used the fact that arterial blood is
slightly under-saturated with respect to its dissolved gaseous
solutes. Therefore cmðH; tÞ will be given by ‘‘cart ’’, the dissolved
concentration of air in arterial blood which, in turn, is obtained
from Henry’s law:

cmðH; tÞ ¼ cart ¼
PartðtÞ

KH
: ð23Þ

In Eq. (23), KH is the Henry’s law constant for air in arterial blood,
and PartðtÞ is the total pressure of the dissolved arterial gases. It is
related to the ambient pressure Pe by

PartðtÞ ¼ fPeðtÞ ffi ð751=760ÞPe ¼ 0:98816Pe ð24Þ

from which it is obtained. Here ‘‘f’’ stands for the factor by which
the medium is under-saturated with respect to its dissolved volatile
solute.
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After integrating Eq. (21), we find

t ¼ � R2 � R2
0

2Ddð1� f Þ þ
2ð2f þ 1ÞcðR� R0Þ

3Ddð1� f Þ2Pe

� 4ð2f þ 1Þc2

3Ddð1� f Þ3P2
e

� ln
ð1� f ÞPeRþ 2c
ð1� f ÞPeR0 þ 2c

� �( )
: ð25Þ

Eq. (25) cannot be inverted analytically, because it is transcen-
dental. But since the right-hand side of Eq. (25) is a monotonically
smooth decreasing function of R, a simple Newton–Rhapson meth-
od [9, (b)] can be used to invert the equation, in order to get RðtÞ vs
t, to any desired level of precision. Alternately, one can determine t
as a function of R (0 6 R 6 R0) by using Eq. (25), and switching the
axes t $ R. The second method which is faster, and free of numer-
ical error, was used to produce the insets shown in the figures.

By setting R ¼ 0 in Eq. (25), one obtains the dissolving time ‘‘td’’
explicitly as a function of the initial bubble radius ‘‘R0’’, and other
known constants.

4.1.2. LHF3
To get the corresponding expressions for the LHF3 model, one

substitutes Eq. (14) into Eq. (5) which gives:

3DdH 	 dt ¼
3PeR2 þ 4cR
	 


ðH � RÞ
PeRðf � 1Þ � 2c

dR: ð26Þ

Integrating Eq. (26), and using Eqs. (23) and (24) as above, gives:

t¼ R3�R3
0

3DdHð1� f Þ�
1

2Ddð1� f Þþ
ð2f þ1Þc

3DdHð1� f Þ2Pe

" #
R2�R2

0

	 


þ 2ð2f þ1Þc
3Ddð1� f Þ2Pe

þ 4ð2f þ1Þc2

3DdHð1� f Þ3P2
e

" #
R�R0ð Þ

� 4ð2f þ1Þc2

3Ddð1� f Þ3P2
e

þ 8ð2f þ1Þc3

3DdHð1� f Þ4P3
e

" #
� ln

ð1� f ÞPeRþ2c
ð1� f ÞPeR0þ2c

� �( )
:

ð27Þ

Again, setting R ¼ 0 in Eq. (27), gives the working expression for td

explicitly as a function of R0, and other known constants.

4.1.3. LHV3
By substituting

D! D0 ¼ k
k� 1

D; ð28Þ

into Eq. (25), one obtains its analogue for the LHV3 model, and on
setting R ¼ 0, we again get an explicit expression for td as a function
of R0 (and other known constants), for the LHV3 model.

As expected, the above solutions obtained for the three-region
models, LHV3 and LHF3, correctly reduce to the corresponding
two-region LHF2 model solutions, on taking the limits k!1,
and H !1, respectively.

4.1.4. Varying ambient pressure
When the ambient pressure is time-dependent, as it is during

an ascent from a dive, it is not possible to analytically integrate
the rate expressions as we did in the previous section. Therefore
for the examples involving a variable ambient pressure (Fig. 5,
below) the integration of Eq. (5) was done numerically, using
4th-order Runge–Kutta integration, together with Eqs. (29) and
(30), below. Further details are outlined in Section 4.2.

For constant rates of ascent, the ambient pressure has the form

PeðtÞ ¼ P0 � aðt � t0Þ; ð29Þ

where P0 is the ambient pressure at the start of the ascent i.e. at
t ¼ t0, and a is the (constant) rate of decompression. For a fixed

depth (or at the surface), a ¼ 0, and for finite ascent rates, a (in
units atm/s) is given by

a ¼ 1 atm
33 fsw

dZ
dt
; ð30Þ

where dZ=dt P 0 is the constant ascent rate (in fsw/s, and fsw
stands for ‘‘feet sea water’’). Eq. (30) is based on the equivalence:
1 atm corresponds to 33 fsw.

For constant descent rates, one would also use Eq. (29), but with
a positive sign in front of the 2nd term on the right-hand side.

4.2. Numerical working equations for the four models based on
Dirichlet boundary conditions, Henry’s law at the bubble surface, and a
fixed or variable ambient pressure

We start by first considering the Diffusion equation which
requires particular care, and subsequently generalize the result
to the three Laplace equation-based models.

Substituting Eq. (7) into Eq. (5) gives:

dR
dt
¼ RPeðf � 1Þ � 2c

3PeR2 þ 4cR
3Dd 1þ Rffiffiffiffiffiffiffiffiffi

pDt
p

� �� �
: ð31Þ

Eq. (31), as written, cannot be integrated either analytically or
numerically. Numerical integration is unstable due to two singu-
larities which occur at the extremities of the integration range,
i.e. at (R ¼ R0; t ¼ 0), and at (R ¼ 0; t ¼ td).

The singularity at (R ¼ R0; t ¼ 0) is removed by transforming
t ! s2, and the singularity at (R ¼ 0; t ¼ td) is removed by chang-
ing the function that is integrated from the bubble radius R, to
the number of moles of air in the bubble ‘‘n’’.

On transforming t ! s2, Eq. (4) becomes:

dn
ds
¼ 8pR2D s

@c
@r

� �
R

� �
: ð32Þ

Eq. (32) is applicable to all four models using Dirichlet boundary
conditions at the bubble surface, and is valid both for fixed and
variable ambient pressures.

Combining Eq. (2) with the Ideal Gas law gives:

R3 þ 2cR2

Pe
� 3nRT

4pPe
¼ 0; ð33Þ

which provides R at all values of n through an exact solution of this
cubic equation.

Substituting Eq. (7) into Eq. (32) gives:

dn
ds
¼ 8pD

RPeðf � 1Þ
KH

sþ Rffiffiffiffiffiffiffi
pD
p

� �� �
ð34Þ

for the transformed Diffusion equation. Eq. (34) is everywhere
well-behaved, and readily integrated using standard methods, such
as a 4th-order Runge–Kutta procedure.

The same approach is used to obtain the working equations for
the LHF2, LHV3 and LHF3 models, at variable ambient pressures.
Specifically, substituting Eqs. (11), (13) and (14) for ð@c=@rÞR into
Eq. (32) gives stable, numerically integrable equations for the
LHF2, LHV3 and LHF3 models, respectively. These equations are
applicable at both fixed and variable ambient pressures.

4.3. Accuracy of numerical integrations

We checked the accuracy of our numerical integrations at fixed
ambient pressures for the Laplace-based equations, by comparing
them with the analytic results provided by Eqs. (25) and (27). In
this way, we verified that the numerical errors were those
expected for the 4th-order Runge–Kutta method. Specifically, the
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relative errors obtained oscillated around 10�5 � 10�4, which is
very small, in relation to our requirements.

5. Results

Our results are given graphically in Figs. 2–5.
Fig. 2 illustrates the differences found by solving the Laplace

equation, as opposed to the full Diffusion equation, for a two-
region model (i.e. H !1). The plots are for the dissolution time
vs the initial bubble radius (main plot), and radius vs time (inset),
for a dissolving AGE. It is evident that the discrepancy between the
two solutions is quite small for the small AGEs shown here. By
comparing Fig. 2 with Fig. 4, it is seen that these differences are
generally smaller than those that arise from using Neumann, as
opposed to Dirichlet boundary conditions. Also, by comparing
Fig. 2 with Fig. 5, it is seen that the choice of a pure diffusion model
(k!1), as opposed to one involving a mix of diffusion and con-
vection (k ¼ 2), also creates a much larger discrepancy between
these functions, than those shown in Fig. 2. Consequently, we will

use the simpler Laplace equation in all our calculations involving
Dirichlet boundary conditions at the bubble surface.

Fig. 3 shows the deviations from Henry’s law obtained by using
Neumann boundary conditions. To the best of our knowledge, this
is the first time that such a comparison has been published for
the problem of a moving gas/liquid boundary. It is seen that the
deviations are significant, and can be either positive or negative,
depending on the initial radius, and on time. The deviations are here
negative for small AGEs (R0 � 15 l), and can be either positive or
negative (depending on time) for larger AGEs. Negative and positive
deviations mean that the dissolved solute concentration at the
bubble surface will be, respectively, smaller and larger than the val-
ues based on Henry’s law. Smaller and larger solute concentrations
at the bubble surface will lead to slower and faster dissolution,
respectively (see for example, Eq. (4)). This means that when
Henry’s law is not imposed at the bubble surface, small AGEs will
always be predicted to dissolve more slowly, relative to the corre-
sponding Henry’s law-based predictions. Larger AGEs will dissolve

Fig. 4. The predicted dissolution time, and radius vs time (inset), for AGEs of
different initial radii, using Neumann and Dirichlet Boundary Conditions. The values
of R0 and td indicated on the main plots with points correspond to the two time
evolution plots shown in the inset. The three-region model with H fixed at 40 l was
used for both boundary conditions (see Table 1 and text for details). Eqs (18), (19),
and (27), were used for the Neumann-, and Dirichlet-based plots, respectively, and
the constants are those given with Fig. 2.

Fig. 5. The dissolution time of an AGE as a function of its initial radius for fixed
depths (FD) and variable depths (VD), and for different thicknesses of the diffusion
layer. All the plots are based on Dirichlet boundary conditions at the bubble surface,
and the plots for variable depths were determined numerically using Eqs. (33), and
(34). The plots at fixed depth were determined using Eqs. (25), (28) and Eq. (25), for
k ¼ 2 and k ¼ 1, respectively.

Fig. 3. The effect of applying Neumann vs Dirichlet boundary conditions on the
calculated dissolved solute concentration at the surface of AGEs of different initial
radii. The plots for Neumann and Dirichlet boundary conditions were obtained from
Eqs. (19), (20) and Eqs. (3), (27), respectively. The physical constants are the same as
for Fig. 2, but the value of H is here finite, and equal to 40 l. The curves terminate
near the dissolution time (td) of the AGE.

Fig. 2. Comparison of the dissolution time of an AGE, as a function of its initial
radius, based on the Diffusion and Laplace equations. The plots were determined
using Eq. (25) and ((33), (34)), for the LHF2 and Di-SICHF2 models, respectively (see
Table 1 and text for details). Inset: Bubble radius vs time for three initial radii. Here
c ¼ 0:7 l atm; f ¼ 0:98816; D ¼ 2900 l2=s; d ¼ 0:015768; KH ¼ 1614 l atm=mol;
T ¼ 310:15 K , and Pe ¼ 1 atm.
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either more slowly, or more rapidly, depending on their size and
time.

This is illustrated in Fig. 4 which shows a cross-over in the td vs R0

plots. The plots shown were generated by using Neumann (dashed
lines) or Dirichlet boundary conditions (solid lines), at the bubble
surface. These plots show that for AGEs with R0 � 25 l, both meth-
ods predict similar values both for the AGE dissolution dynamics
(insets), and for the dissolution times td (main graphs). For larger
bubbles, however, the predictions stemming from the two bound-
ary conditions deviate significantly.

Fig. 5 shows a result that may help account for the observation
that IEDCS frequently occurs unexpectedly, i.e. when the dive was
within the prescribed time-depth limits, and the diver ascended at
an appropriate ascent rate. Colloquially, IEDCS often occurs as an
‘‘undeserved hit’’.

For each value of k in Fig. 5, we show two plots, one (solid lines,
‘‘FD’’) is for an AGE that evolves at a fixed depth of 100 fsw. The
other (dashed lines plus points, ‘‘VD’’) is for an AGE that evolves
during an ascent at a (typical) rate of 1 fsw/s, from 100 fsw, with
the AGE initially created at 100 fsw. Note that for the initial radii
and dissolution times shown here, the bubble dynamics (inset)
and dissolution times (main graph) are virtually indistinguishable
for fixed depths and ascents. This occurs partly because, for these
small bubbles and rapid dissolution times, very little fractional
change in the ambient pressure occurs during the bubble’s lifetime,
and partly because of the opposite effects manifested by R and
ð@c=@rÞR on the contraction rate of a bubble (see Eqs. (4), (7),
(11), (13) and (14)).

The horizontal lines drawn at 2 and 5 s represent the estimated
exposure times of an AGE to arterial blood, for an AGE produced by
passage through a PFO, and an AVA, respectively. The exposure
time is the total time that the AGE is exposed to arterial blood,
from the time it passes the r/l shunt, until the time it reaches the
Labyrinthine artery in the head. The details by which these esti-
mates were arrived at are given in Appendix A.

For definiteness, consider first the horizontal at 2 s. This hori-
zontal intersects the k ¼ 2 plots at 
 6 l. This means that an AGE
originating from a PFO at 100 fsw will survive to reach the inner
ear, if it’s initial radius is greater than 
 6 l, but it will have fully
dissolved prior to reaching the inner ear, if it’s initial radius is less
than 
 6 l. The k ¼ 1 plots were included in this graph, in order to
put a lower bound on this estimate. These plots, because they are
for pure diffusion, provide the maximum dissolution time (i.e. an
upper bound on td) for an AGE of a given initial radius, created at
a given depth. The 2 s horizontal intersects the k ¼ 1 plots at

 4:5 l. Taken together, these results indicate that an AGE from
a PFO generated at 100 fsw, will survive it’s trip to the inner ear
if it’s initial radius is greater than 
 ð4:5—6Þ l, but it will have fully
dissolved before reaching the inner ear if it’s initial radius is less
than 
 ð4:5—6Þ l.

Repeating this exercise for the horizontal at 5 s, we find that an
AGE from an AVA generated at 100 fsw, will survive it’s trip to the
inner ear if its initial radius is greater than 
 ð6—8Þ l, but it will
have fully dissolved before reaching the inner ear if it’s initial
radius is less than 
 ð6—8Þ l.

6. Summary

The Diffusion and Laplace equations were solved to determine
the dissolution times, and the bubble-radius vs time dissolution
curves, for small gas bubbles suspended in a liquid medium. These
bubbles dissolved due to the effects of surface tension and dis-
solved solute under-saturation. The differences that resulted from
the application of one or the other of these equations were small
and totally insignificant for our purposes.

We also carried out the first comparison (of which we are
aware), between the results obtained for this problem by sepa-
rately applying Neumann and Dirichlet boundary conditions at
the bubble’s surface. We found that these two boundary conditions
predicted very similar results, provided the bubbles were small
(< 25 l) and short-lived (<40 s), but diverged significantly for
larger longer-lived bubbles.

We applied our rate expressions to the timely (and serious)
problem of Inner Ear Decompression Sickness (IEDCS). This is be-
lieved to be caused by small arterial gas emboli (AGEs) which get
into arterial circulation via a right-left shunt. Subsequently, they
are believed to get to the arterioles of the inner ear, where they be-
come inflated with inert gas during decompression. The inert gas
comes from the contiguous supersaturated tissues of the inner ear.

A key point in our analysis was to compare AGE exposure times
to arterial blood ‘‘texp’’, with their dissolution times in arterial blood
‘‘td’’. The idea is that if an AGE dissolved before reaching the Laby-
rinthine artery in the head (i.e. if td < texp), IEDCS would not occur.
If however, it survived the trip to this artery (i.e. if td > texp), IEDCS
may occur.

The dissolution time ‘‘td’’ is influenced by the depth at which
the AGE is created — the greater the depth, the greater the number
of moles of gas in the AGE — and by its initial radius ‘‘R0’’. We found
that ‘‘td’’ was (for typical diving ascent rates), almost independent
of the rate of ascent. Therefore (for typical diving ascent rates), for
an AGE created by passage through an r/l shunt at a particular
depth, reducing the ascent rate has virtually no effect on ‘‘td’’.
Consequently, reducing the ascent rate has no bearing on whether
or not an AGE gets to the inner ear before it dissolves. For an AGE
created at a particular depth, this depends almost entirely on the
AGE’s initial radius‘‘R0’’. This, in turn, will depend on the whether
the diver has a medically significant (i.e. large) r/l shunt.

Our predictions are consistent with much of what is known
about IEDCS. Specifically, it frequently occurs after what was con-
sidered a safe dive followed by a safe ascent, and it is much more
common in divers with a right-left shunt, than in divers without
such a shunt. As indicated in the preceding paragraph, for small
short-lived bubbles, and for typical diving ascent rates, the ascent
rate has almost no effect on the dissolution time of the AGE, which
(for an AGE created at a particular depth), is governed almost en-
tirely by the initial size of the AGE entering arterial circulation.
Therefore, divers with a significant right-left shunt (such a Patent
Foramen Ovale, or an Arterio-Venous Anastomosis), which allows
the passage of relatively large AGEs into arterial circulation, would
be expected to be relatively susceptible to IEDCS, which is what is
observed clinically.
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Appendix A. Estimation of the exposure time of an AGE to
arterial blood

We need estimates for the total exposure time of an AGE to
arterial blood, from the time it is passed through an r/l shunt, until
the time it reaches the Labyrinthine artery in the head. To do this,
we use a rudimentary model of arterial flow, estimates of mean
arterial flow rates, and estimates of the dimensions of the relevant
arteries. The specific values used were validated elsewhere [13].
We estimate the total exposure time from the sum of the number
of cardiac cycles prior to leaving the left heart, and the transit time
while in arterial circulation en route to the Labyrinthine artery.
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Only the main arteries are considered, since flow through arte-
rioles — as measured by the linear velocity — is extremely rapid.
Our model of the main arteries consists of joined cylinders of dif-
ferent lengths and diameters. We ignore the true shape of the
arteries and of the arterial interconnections, the periodic nature
of arterial flow, and assume the constant average volumetric flow
rate of arterial blood to be 5 l/min (or 83.3 cm3/s) [13].

The linear velocity of a fluid ‘‘v i’’ is related to its flow rate ‘‘q’’ by

v i ¼
q
Ai
¼ q

pr2
i

: ðA:1Þ

Here, Ai is the cross-sectional area of artery ‘‘i’’ (taken to be a cylin-
der of radius ri). The time that it takes an infinitesimally small vol-
ume element of blood to traverse an artery of length Li is obtained
from

ti ðsÞ ¼
Lipr2

i

q
¼ Lipr2

i

83:3 cm3=s
; ðA:2Þ

where the length and radius of the artery are in cm.
The dimensions of the relevant arteries, and the times required

to traverse each of them are entered in Table A.2.

(1) Exposure time for an AGE passed through a PFO.
From this table the total transit time is.635 s (using arteries
1, 3, 5, 13) and.912 s (using arteries 1, 2, 15, 17) to the left
and right ears, respectively. We average these, and round
up the average value to 1 s, as the approximate transit time
to either ear from the left heart.
We estimate that an AGE passed through a PFO into the left
heart remains there for 1 cardiac cycle, prior to entering the
Ascending aorta. Assuming that a cardiac cycle takes 1 s, we

obtain an estimate of 2 s for the total exposure time to arte-
rial blood experienced by an AGE from a PFO reaching the
Labyrinthine artery in the head.

(2) Exposure time for an AGE created by the passage of a venous
bubble through an AVA.
The exposure time to arterial blood will here be somewhat
longer than for a PFO-generated AGE, because venous bub-
bles coming from the right heart and passed through an
AVA, require at least 4 cardiac cycles before they appear in
the left heart [3]. This is the time required for the venous
bubble to go from the right heart, through the AVA, and into
the left heart. We assume, on average, 5 cardiac cycles, or 5 s
are required for the transit from the right heart through the
AVA to the left heart. Assuming half this time was spent in
venous, and half in arterial circulation, we find that we
should add 2.5 s to the arterial blood exposure time, beyond
what it was estimated to be for an AGE passed through a
PFO. Consequently, our estimate of the total exposure time
of an AGE originating from the passage of a venous bubble
through an AVA is 4.5 s, which we round up to 5 s.
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Table A.2
Arterial radii and lengths, and linear speed of blood in selected arteries that connect
the heart to the head.

Name Lbla ri (cm) Li (cm) v i (cm/s) ti
b (s)

Ascending aorta 1 1.47 4 12.28 0.326
Aortic arch I 2 2.24 2 5.287 0.378
Brachiocephalic 3 0.699 3.4 54.29 0.063
R. carotid 5 0.473 17.7 118.6 0.149
R. ext. carotid 13 0.382 17.7 181.8 0.097
L. carotid 15 0.413 20.8 155.5 0.134
L. ext. carotid 17 0.334 17.7 237.9 0.074

a The labels are from Ref. [13].
b This is the time a differential volume element takes to traverse the artery, as

obtained with Eq. (A.2).
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